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Abstract

This paper discusses the application of four types of neural networks – standard artificial neural
networks (ANNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), and
spiking neural networks (SNNs) to visual imagery tasks. It aims to provide an overview of visual
imagery and neural network approaches to provide a solid starting point for future work at the
intersection of these fields. Visual imagery involves a user of a brain-computer interface (BCI)
system controlling that BCI by imagining specific images that the system then deciphers from
their neurological data (usually electroencephalographic data – EEG) as commands. The paper
begins with a summary of each neural network type discussed and provides an overview on the
background of visual imagery tasks in general. The application of each network type to visual
imagery is then discussed, with attention paid to their relative advantages and disadvantages in
general and specifically in that application. The paper concludes with a summary of findings and
a general recommendation regarding which network type to use. We conclude that CNNs are
ill-suited for visual imagery tasks, but that ANNs, RNNs, and SNNs are all valid options, with
SNNs (once further developed) being the frontrunner.

1 Introduction

Deciphering neurological data related to specific imagined “commands” by a user is a key method
of communication with Brain-Computer Interfaces (BCIs). Many BCIs operate by deciphering data
related to movements the user imagines enacting, a paradigm called Motor Imagery (MI) (Virgilio
G. et al., 2020). Lately, however, a new method of imagination-based control has garnered interest
– visual imagery. This newer method involves a user imagining one of a small set of images and the
BCI analyzing their neurological data (most often electroencephalographic - EEG - data) to decide
which they are currently thinking of in order to “hear” the appropriate command (Kosmyna et al.,
2018). Like MI, this presents a classic classification task. Traditional machine learning methods such
as support vector machines (SVMs) and K-Nearest-Neighbors (KNN) classifiers are often used in
tasks of this sort, but the application of artificial neural networks has also been gaining ground in
recent years (Luo et al., 2020; Virgilio G. et al., 2020). With the visual imagery field still relatively
new and the field of artificial neural networks broad and in many places new itself, it is increasingly
important to examine the relative advantages and disadvantages of the various network types to the
kind of classification task presented by visual imagery in order to better inform future studies at the
intersection of these fields. This will be the aim of this paper, which will first provide an overview of
the network types and then discuss their application to visual imagery.

2 Network Types

Before discussing their application to visual imagery tasks, we first provide a brief overview of the four
neural network types we will be discussing – classic artificial neural networks (ANNs), convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and the latest addition to the neural
network family, spiking neural networks (SNNs). Note that in older literature, and in some modern
work, classic ANNs are also referred to as multi-layer perceptrons (MLPs) or simply as neural networks
(NNs).

2.1 Artificial Neural Networks (ANNs)

At its most basic level, an ANN is a computational model which mirrors the structure and connections
of the human neuron system. Neurons in a real brain are represented as nodes in an ANN. Each
node aggregates data from previous nodes (or from the original input itself) and performs simple

2



Cognitive Science Student Journal 2023, 1 Irani, Parantean, Powell, Venzke & Zhong

operations on that data before passing it on to the next linked node, provided that the combined
input to the node is high enough to cross a firing threshold (analogous to thresholds in real neurons).
Nodes are arranged in layers, with the first being the input layer and the final being the output layer.
Between these two layers are processing layers, called hidden layers, of which there can be as few
as one or as many as deemed necessary for the present task. How the nodes are connected and the
weights of those connections can be modified to govern how the neural network handles the data it
is fed, optimizing it for the task at hand (Chai et al., 2012; Hramov et al., 2017).

2.2 Convolutional Neural Networks (CNNs)

Convolutional neural networks are a type of ANN in which early layers identify less complex patterns
which are used in later layers to process and construct increasingly complex ones. Three di↵erent kinds
of layers are typically seen in a CNN – convolutional, pooling, and fully connected. A convolutional
layer, which the first layer typically is, computes the dot product of a filter kernel (a two-dimensional
array of weights) and a data array (in the first layer, usually representing an image) to extract specific
target features. Subsequent pooling layers reduce the model’s complexity, often through subsampling
and similar processes that output a reduced, more summarized representation of the data up to that
layer. Two types of pooling layers are typically used – the Max Pooling layer, which returns the
maximum value of the data covered by a kernel, and the Average Pooling layer, which returns the
average of all the values of the data covered by the kernel. A fully connected layer(s) is typically
placed at the end of the layer chain and often handles the majority of the classification work in a
CNN, calculating the likelihood that the output (now in the form of extracted features) of earlier
layers belongs to a certain class. While the first layer is usually a convolutional layer and the last
layer a fully-connected layer, the intermediate layers can be in any arrangement and order of the layer
types needed. Note that some layers of a CNN, such as the final fully connected layer, can often
take the form of a basic ANN (Bagchi & Bathula, 2022; Kwon et al., 2020).

2.3 Recurrent Neural Networks (RNNs)

RNNs are also a kind of ANN whose hallmark is the addition of recurrence, which gives these
networks a form of memory and also enables them to work on sequences of data (such as data with
a temporal dimension). Whereas in standard ANNs activity proceeds from the input to the output in
one direction, called “feeding forward” outputs in an RNN can be fed back into the model to inform
earlier steps. This may occur between layers or on the level of the full model, in which the output of
the model on the previous run is fed into the model as part of its input for the next run. This allows
RNNs to have a form of memory in that they retain all previous information until the next step or
time series. The incorporation of previous outputs into new inputs allows an RNN’s “decisions” to
consider not only the current input from the current step in the input sequence but also what it has
learned from previous inputs as well. Various types of RNNs exist depending on the number of inputs
and outputs involved, with the most basic form being the one-to-one model with only one input and
only one output (Ma et al., 2018; Qiao et al., 2019).

2.4 Spiking Neural Networks (SNNs)

SNNs are the latest generation of ANNs, and the generation which most closely reflects the working
of a real brain. Unlike earlier network types, these networks accept input data and produce output
data only in the form of spike trains, which are similar to the action potentials used by real neurons.
SNNs also lack the fixed layer format of earlier network types and they do not transmit data on a
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cyclical basis, but rather in response to discrete events occurring at specific time points (Paugam-
Moisy & Bohte, 2012). The neurons that make up the model may be arranged in a cortex-like
structure, such as in the Neu- Cube architecture (Kasabov, 2014), with the modeled neurons most
commonly threshold-based (e.g. Leaky Integrate and Fire) models (Paugam-Moisy & Bohte, 2012).
Because input data for SNNs must be in the form of spike trains, various encoding schemes can be
applied to the raw data in preparation for the application of this kind of network. These principally
include translations to rate codes (in which the presence, absence, and frequency of spikes is taken
into account) or to temporal codes (in which the relative timing of spikes is the principal focus), with
the latter being especially suited to SNNs (Tu et al., 2014). As with nearly all neural network types,
optimization of the network for a specific task involves updating the connections and connection
weights between neurons, a task often achieved in a SNN via a spike-timing-dependent plasticity
(STDP) paradigm, which strengthens or weakens connections between neurons depending on when
the pre- and postsynaptic neurons fired relative to each other (Paugam-Moisy & Bohte, 2012).

3 Application of Networks to Visual Imagery Data

With a basic overview of the network types in mind, we will now turn to their respective advantages
and disadvantages, especially as they apply to the processing of the EEG data commonly collected
and processed in visual imagery tasks.

3.1 Applying ANNs

Basic ANNs benefit from being simpler and easier to set up than the more advanced neural network
forms. They are able to handle larger inputs and can usually achieve high accuracy and e�ciency
with less data. However, these networks do not handle uncorrelated variables well, limiting what they
can glean from more complex input data, and as with most neural networks, they su↵er from the
infamous “black box” problem, in which the relationships between variables in the final model are
not always clear. This can limit the conclusions that can be drawn about the relationships between
inputs and outputs and what factors were more or less important to the task (Chai et al., 2012;
Hramov et al., 2017). Specifically with regard to visual imagery EEG data, ANNs also require that
some form of feature extraction process is run on the data before input, resulting in the loss of
potentially relevant data contained in the raw EEG data stream. However, their relative simplicity
and the fact that they do not require any specific hardware to run, the existence of well-defined
training and programming paradigms for this network type, and the existence of predeveloped and
easy-to-use tools for programming this kind of network (such as PyTorch and TensorFlow) maintain
the ANN as a “safe” option for use in visual imagery and other classification tasks.

3.2 Applying CNNs

While CNNs are typically associated with processing image data, they have also been successfully
applied to neurological data (Kalafatovich et al., 2020). CNNs excel at local feature extraction
and, with clean EEG data, they can achieve an impressive level of accuracy in classification tasks
(Waytowich et al., 2018). Their feature-based method may also allow for better insights into the most
critical aspects of the data for the output in a given task. However, the presence of significant noise in
data is a serious challenge for this kind of network, as the filter kernels in the convolutional layers are
more easily hindered by significant noise in the data stream. This particularly a↵ects the processing
of EEG data, which has a low signal-to-noise ratio (Bagchi & Bathula, 2022). Large amounts of EEG
training data are required to train the model well for an EEG application, and the performance of
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the ultimate decoding is directly related to the dataset size (Zhang et al., 2020). CNNs are also not
optimized for temporal data and can only detect structural patterns, a key drawback when working
with visual system data, which is thought to rely heavily on the temporal components of neural
activity (Bang et al., 2021). CNNs are therefore a suboptimal choice for processing visual imagery
EEG data since their high data requirements and lack of temporal component processing would yield
considerable drawbacks when working with this kind of task.

3.3 Applying RNNs

RNNs excel when long-term dependencies in data are present and essential for classification, and
when data is sequential, as both require a form of memory. Parameter tuning is less of a concern
in this kind of network as well, since the memory component a↵ords the network a unique form of
adaptability. The memory component of an RNN can also allow it to overcome noise, crucial when
working with EEG data, provided that noise was present in the training data and not only in the data
the network later works with in application (Yeo, 2019). However, domain knowledge is usually still
key for saving processing time and hand-crafted steps are often needed when applying RNNs to EEG
data, limiting their ability to shed light on elements of visual information processing that are not
already known. RNNs can also struggle with lengthy input data, and training an RNN still requires
substantial time and data (Ma et al., 2018; Qiao et al., 2019). Visual imagery EEG data specifically
may not be lengthy enough for the RNNs struggles with lengthy input data to be a concern, but it is
also not clear if longterm dependencies are important in visual imagery classification tasks, meaning
that one of RNNs hallmark advantages may not be useful in this context at all.

3.4 Applying SNNs

SNNs are able to work with both the spatial and the temporal components of input data, the former
particularly in models such as NeuCube, in which artificial neurons are arranged in a cortex-like layout
and data is fed into the neurons closest to the location of the electrodes which originally recorded
that data (Kasabov, 2014). With respect to EEG data, which already presents as a form of spike
train, this network type can also accept raw or nearly-raw input and has been shown to be successful
when doing so (Taylor et al., 2014). Accepting raw input allows the network to take full advantage
of input data and avoids the inevitable data loss associated with feature extraction. The ability to
handle the temporal components of input data, which as previously discussed are considered key for
visual information processing (Bang et al., 2021) is another key advantage of this kind of network.
Their lack of a rigid layer system can also make these networks more adaptable, since the entire
structure of the network can shift dynamically to best match the task at hand. These networks
have also been shown to be highly successful even when fed lower amounts of training data (Taylor
et al., 2014). However, SNNs do have the significant drawback of requiring specialized hardware to
run optimally, and parameter optimization and conversion of data to spike train inputs (for data not
already in a spikelike form, such as EEG data) is a challenge (Kasabov, 2014). SNNs therefore present
numerous advantages when approaching visual imagery tasks, though their hardware requirements,
the challenge of parameter tuning in these models, and the fact that few established tools are
currently available for programming them may limit how broadly they can be applied at this time.

4 Conclusion

Each neural network type discussed has advantages and disadvantages both in general and specifically
with respect to visual imagery tasks. CNNs and standard ANNs are suboptimal for visual imagery as
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they are unable to process the temporal components considered key to working with visual information
processing. RNNs can handle the temporal component, but su↵er from the same high training data
and time demands of CNNs. However, these three network types are well-established with substantial
knowledge and tools available for successfully programming them. CNNs specifically would not be
recommendable for a visual imagery task, but the use of an RNN for the temporal component or an
ANN for simplicity and relatively lower data and training time requirements would both be suitable
options. SNNs have a few current limitations that may prevent their widespread use for the time
being, principally the requirement of specialized hardware and the current lack of tools and resources
for programming them. However, they present a potentially game-changing option due to their ability
to handle both spatial and temporal data, their high level of adaptability, and their ability to work
with less training data. Once SNNs themselves are further developed and better tools and methods
become available for training and applying them, these networks will likely present the best option
for processing data in tasks like visual imagery.
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